Introducing mELO: An R package for multidimensional Elo ratings
It’s like Elo, but supports non-transitive interactions between agents.
I’ve written an R package implementing DeepMind’s multidimensional Elo rating approach for evaluating agents. I’ve called the package mELO and it can be found here.
The mELO rating system has the desirable property of being able to handle cyclic, non-transitive interactions (meaning it can handle rock-paper-scissors style dynamics). It is also better behaved in the presence of redundant copies of agents or tasks.
The DeepMind team, Balduzzi, et al. (2018) proposed that a rating/evaluation method should have the following properties:
- P1. Invariant: adding redundant copies of an agent or task to the data should make no difference.
- P2. Continuous: the evaluation method should be robust to small changes in the data.
- P3. Interpretable: hard to formalize, but the procedure should agree with intuition in basic cases.
Typical methods for performing pairwise comparisons such as Elo or Glicko violate P1 and P2 and can result in poor evaluations of agents and poor predictions of outcomes.
Installation
You can install the mELO
package from github using:
devtools::install_github("dclaz/mELO")
Vignettes
The following vignettes describe the functionality and utility of the package in more detail:
- Introduction. An introduction to the mELO package with examples for evaluating agents with cyclic and other more complex non-transitive interaction properties. Some of the math is also explained here.
- Application to AFL matches. A very brief investigation of whether there is any evidence of non-transitive relationships in AFL match outcomes.
- Impact of noisy or probabilistic outcomes in mELO models. An investigation into how noise or probabilistic outcomes impacts the estimation abilities and/or the prediction accuracy of a mELO model.
Example
The example below demonstrates how a ratings model can be fit using the
ELO()
and mELO()
functions.
We will fit models to predict the outcome of rock-paper-scissor matches. It contains 120 matches.
# Inspect rock paper scissors data
head(rps_df)
#> time_index throw_1 throw_2 outcome
#> 1 1 PAPER ROCK 1
#> 2 2 ROCK SCISSORS 1
#> 3 3 SCISSORS PAPER 1
#> 4 4 ROCK PAPER 0
#> 5 5 SCISSORS ROCK 0
#> 6 6 PAPER SCISSORS 0
# Fit ELO model
rps_ELO <- ELO(rps_df)
# Inspect modelled ratings
rps_ELO
#>
#> ELO Ratings For 3 Players Playing 120 Games
#>
#> Player Rating Games Win Draw Loss Lag
#> 1 SCISSORS 2204.6 80 40 0 40 0
#> 2 ROCK 2204.6 80 40 0 40 1
#> 3 PAPER 2190.7 80 40 0 40 0
# Get predictions
ELO_preds <- predict(
rps_ELO,
head(rps_df)
)
# Inspect outcomes and predictions
cbind(
head(rps_df),
ELO_preds = round(ELO_preds, 3)
)
#> time_index throw_1 throw_2 outcome ELO_preds
#> 1 1 PAPER ROCK 1 0.48
#> 2 2 ROCK SCISSORS 1 0.50
#> 3 3 SCISSORS PAPER 1 0.52
#> 4 4 ROCK PAPER 0 0.52
#> 5 5 SCISSORS ROCK 0 0.50
#> 6 6 PAPER SCISSORS 0 0.48
We note that while the estimated ratings are roughly equal, the predicted probabilities are very poor. Elo cannot handle the cyclic, non-transitive nature of this system.
The solution
Let’s fit a multidimensional Elo model using mELO()
:
# Fit mELO model
rps_mELO <- mELO(rps_df, k=1)
# Inspect modelled ratings
rps_mELO
#>
#> mELO Ratings For 3 Players Playing 120 Games
#>
#> k = 1.
#>
#> Player Rating Games Win Draw Loss Lag
#> 1 PAPER 2200.7 80 40 0 40 0
#> 2 SCISSORS 2200.2 80 40 0 40 0
#> 3 ROCK 2199.2 80 40 0 40 1
# Get predictions
mELO_preds <- predict(
rps_mELO,
head(rps_df)
)
# Inspect outcomes and predictions
cbind(
head(rps_df),
mELO_preds = round(mELO_preds, 3)
)
#> time_index throw_1 throw_2 outcome mELO_preds
#> 1 1 PAPER ROCK 1 0.999
#> 2 2 ROCK SCISSORS 1 0.999
#> 3 3 SCISSORS PAPER 1 0.999
#> 4 4 ROCK PAPER 0 0.001
#> 5 5 SCISSORS ROCK 0 0.001
#> 6 6 PAPER SCISSORS 0 0.001
A convenient helper function has been provided to generate predictions for all interactions:
model_pred_mat(
rps_mELO,
rps_df[[2]]
) %>%
round(3) %>%
knitr::kable()
PAPER | ROCK | SCISSORS | |
---|---|---|---|
PAPER | 0.500 | 0.999 | 0.001 |
ROCK | 0.001 | 0.500 | 0.999 |
SCISSORS | 0.999 | 0.001 | 0.500 |
The mELO model with k=1
can handle the cyclic, non-transitive nature
of this system which results in much more accurate predictions. The k
parameter determines the complexity of the non-transitive interactions
that can be modelled.
The introductory vignette contains more examples of the packages functionality and contains examples on systems with more complex non-transitive dynamics.